
International Journal of Computer Applications (0975 – 8887)  

Volume 50 – No.12, July 2012 

1 

A Computational Study for the Graph-Theoretic Version 

of the Union-Closed Sets Conjecture  

 
M. I. Moussa 

Computer Science Department, Faculty of Computers & 
Information, Benha University, Benha, Egypt, 

E. M. Badr 
Department of scientific computing, Faculty of Computers 

& Information, Benha University, Benha, Egypt, 
 

 

 

ABSTRACT 
An induced subgraph S of a graph G is called a derived 

subgraph of G if S contains no isolated vertices. An edge e of 

G is said to be residual if e occurs in more than half of the 

derived subgraphs of G. We prove some theorems which 

calculate the number of derived subgraphs for some special 

graphs. We also present a new algorithm SDSA that calculates 

the number of derived subgraphs for a given graph G and 

determines the residual and non-residual edges. Finally, we 

introduce a computational study which supports our results. 
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1. INTRODUCTION 
A union-closed family of sets A is a finite collection of sets 

not all empty such that the union of any two members of A is 

also a member of A . The following Conjecture is due to Peter 

Frankl [1, 2, 3]. 

Conjecture 1.  Let A = { A1, A2, . . . , An } be a union-closed 

family of  n distinct sets. Then there exists an element which 

belongs to at least n / 2 of the sets in A. 

Let A = iA . If we replace each set Ai by Bi = A - Ai then 

we get an intersection-closed family of sets, which we call the 

dual family of A. Therefore Conjecture 1 is equivalent to the 

following. 

Conjecture 2.  Let B = { B1, B2, . . . , Bn } be an intersection-

closed family of n distinct sets. Then there exists an element 

which belongs to at most n / 2 of the sets in B . 

An induced subgraph S of a graph G is called a derived 

subgraph of G if S contains no isolated vertices. An edge e of 

G is said to be residual if e occurs in more than half of the 

derived subgraphs of G otherwise e is non-residual. Let D(G) 

denote the set of derived subgraphs of G and put nd(G) = 

|D(G)|. A graph-theoretic version of the union-closed sets 

conjecture due to El-Zahar [4]. He formulated a weaker 

version of Conjecture 1 specialized for graphs as the 

following. 

Conjecture 3.  Every non-empty graph contains a non-

residual edge.  

Example 1. The derived subgraphs of  C6 are  , C6 and the 

subgraphs S1, S2, … , S5 together with their cyclic 

permutations  as shown in Figure 1. In all, we have nd(C6 ) = 

29 ( compare to 64 induced subgraphs of C6 ). Each edge of 

C6 is contained in exactly 12 derived subgraphs and, therefore, 

is non-residual.  
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Fig.1: Derived Subgraphs of C6 

Example 2. Consider the graph G1 of Figure 2. This graph has 

nd(G1) = 34. Each of the edges e1, e2, e3 occur in 18 derived 

subgraphs so that it is residual. The remaining edges are non-

residual belonging only to 13 derived subgraphs. 
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Fig. 2:  Residual Edges 

B. Llano et al proved that the every simple graph with at least 

one edge contains a non-residual edge (Conjecture 3) [5]. 

In this work , our aim is to introduce a computational study 

for derived subgraphs. 

In Section 2, we prove some theorems which calculate the 

number of derived subgraphs for some special graphs. In 

Section 3, we present a new algorithm SDSA that calculates 

the number derived subgraphs for a given graph G and 

determines the residual and non-residual edges. In Section 4  

we give a computational study which supports our results. 

Finally, we give our conclusions and discuss possible 

extensions of the algorithm. 

2. THE MAIN RESULTS 
In this Section, we prove some theorems which calculate the 

number of derived subgraphs for some special graphs using 

the Principle of Mathematical Induction and the Principle of 

Inclusion-Exclusion. 
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Theorem 1. Let Pn be the path v1, v2, v3, …, vn . Then the 

number of derived subgraphs of Pn  is given by the following 

relation :  

1 2 3

1 0,1

( ) 2 2

2 ( ) ( ) ( ) 3

d n

d n d n d n

if n

n P if n

n P n P n P if n  




 
   

        (1)          

Proof. We prove this theorem by the Principle of 

Mathematical Induction. The proof will now proceed in two 

steps : the initial step and the inductive step. 

Initial Step. It is clear that the statement (1) is true for n = 0, 

1, 2. 

Inductive Step. Here we must prove that the following 

assertion: " If there is a positive integer k such that ( )d kn P = 

1 2 32 ( ) ( ) ( )d k d k d kn P n P n P     is true then 

1 1 2( ) 2 ( ) ( ) ( )d k d k d k d kn P n P n P n P      is true. Thus, we 

assume  there is a positive integer k such that 

1 2 3( ) 2 ( ) ( ) ( )d k d k d k d kn P n P n P n P                 (2) 

Since ( )d kn P  is the number of all derived subgraphs of Pk so 

by adding one vertex vk+1 to the relation ( 2 ), we will 

1( )d kn P 
  as follows: 

1( { })d k kn P v  = 

1 1 2 1 3 12 ( { }) ( { }) ( { })d k k d k k d k kn P v n P v n P v           

 then 
1 1 2( ) 2 ( ) ( ) ( )d k d k d k d kn P n P n P n P     so the relation 

( 1 ) is true for n   0.               ■ 

Theorem 2 . Let Cn be a cycle on n  3 vertices. Then the 

number of  derived subgraphs of Cn is given by the relation :   
3

1 2
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( ) = ( ) 2( 1) ( )
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Proof. Let Cn be the cycle v1, v2, . . . , vn, v1 . Let x1 denote the 

number of derived subgraphs of Cn not containing v1, then x1 

= 
1( )d nn P 

. On the other hand, let x2 denote the number of 

derived subgraphs which contain v1 . Such a derived subgraph 

contains a path Pi of length ( i – 1 ) that contains v1 and a 

derived subgraph of path Pi  of order ( n – i – 2 ), where 

2 1i n   . Then for fixed i this number is    i 2( )d n in P   . 

Thus  

3
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Moreover Cn is a derived subgraph of itself, therefore ( )d nn C  

= x1 + x2 + 1 so 

3
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Theorem 3. Let G(n, n) be a bipartite graph with two 

partitioning sets V1 and V2, where |V1| = |V2| = n and deg(v) = n 

– 1 for each vV( G(n, n ) ). Then the number of derived 

subgraphs of G(n, n) )  is given by the relation : 

( ( ,   ))dn G n n  = 2 12 2 2 2n n nn n      , and each edge  

uv   E ( G(n,n) ) is contained in exactly 2n-1(2n-1 -1 ) derived 

subgraphs. 

Proof. Let V1= v1, v2, . . . , vn and V2 = u1, u2, . . . , un where 

uivi  E( G(n, n ) ) for each i = 1, 2, . . . , n. 

To form a derived subgraph, we take S1  S2 where Si   Vi 

for i = 1, 2. If |S1|  2 and |S2|  2 then we get a derived 

subgraph.  

If |S1| =1, say, S1 = vi  then 2 2 \{ }iS V u   . This shows 

that   

( ( ,   ))dn G n n  = 2(2 1) 1 2 (2 1)n nn n      

Now we fix an i = 1, 2, . . . , n. We count the number of 

derived subgraphs which contain the edge v1ui . Such derived 

subgraph will have the form S1  S2 where v1 S1  V1. 

Again if |S1|  2 and |S2|  2 then we have a derived 

subgraph. 

 If, say S1 = {v1} then u1  S2. This shows that the number of 

derived subgraphs which contain viui is equal to    
1 2 2 2 2 1(2 1) 2(2 ) 1 2 2n n n n        .■  

3.  THE SERIAL DERIVED SUBGRAPH      

ALGORITHM 

In this Section, we introduce a serial derived subgraphs 

algorithm SDSA which calculates the number of derived 

subgraphs for a given graph G . The algorithm also 

determines the residual and non-residual edges. The 

parameters of the algorithm are :  

A[i, j]     : the adjacency matrix of G. 

S [i]   : all of the subsets of V(G). 

(i,j)   : the entry of the matrix E(i,j) which is equal to     

               the number of   derived subgraphs that contain vivj .  

total    : the number of all derived subgraphs of G. 

Let G be a graph which has n vertices and m edges. We can 

represent the graph G by the Adjacency-Graph class, where 

a[i][j] is the entry element (i,j) in the adjacency matrix A. The 

algorithm finds all subsets of the vertex set V(G); then it 

checks if the current subset induces a derived subgraph or not. 

The algorithim finds the number of derived subgraphs that 

contain any edge e   E(G).  

Our main algorithm SDSA calls three procedures Initialize-

Subset, Get-Next-Subset and Check-Subset as follows: 

Algorithm 1: A serial derived subgraphs algorithm  SDSA  

Input : A[i][j] the adjacency matrix of G. 

Output :  ( total ) the number of all derived subgraphs of G. 
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1: Call Algorithm2 ( Initialize-Subset ) 

2: while Not Done do 

3:  Call Algorithm3 ( Get-Next-Subset ) 

4:  Call Algorithm4 ( Check-Subset )  

5:  if DERIVED then 

6:   total   total + 1 

7:   for i=1n do 

8:                          for j=i+1n do 

9:    if S[i] = S[j] = 1 then 

10:     E[i,j]   E[i,j] + 1 

11:    end if 

12:         end for 

13:                    end for 

14:  end if 

15: end while  

16: Return total 

17: For each e =(vi, vj)  if E[i,j] > total / 2 the edge e is 

residual otherwise is non-residual.  

The Initialize-Subset procedure initializes the initial subset of 

V(G) as array  S[j] =  0. The subgraph induced by the initial S 

is the empty derived subgraph. We outline below the 

initialize-Subset procedure which considers the empty 

subgraph as the first derived one. 

Algorithm 2:  Initialize-Subset  

1: Take the empty set to be the initial subset S 

2: Set the value of total = 1 

3: For every edge e = ( i, j ) let E[i,j] = 0 

4: Done False  

The Get-Next-Subset procedure generates all subsets of V(G) 

by the method is known as  

a binary counting representation. 

 Algorithm 3: Get-Next-Subset  

1: j   n + 1 

2: repeat 

3:  j   j – 1 

4: until (( S[j] = 0) or ( j = 0) 

5: if j   0 then 

6:  S[j]   1 

7:  MAX   j 

8:  for i= MAX +1 n do 

9:   S[i] = 0 

10:  end for 

11: else 

12:  Done   True 

13: end if   

 

The Check-Subset verifies the current subset S as a derived 

subgraph or not. A precise description of this process is the 

following. 

Algorithm 4: Check-Subset  

1: DERIVED   False 

2: count   1 

3: for k = 1   n  do 

4:  if S[k] = 1 then 

5:   sum = 0 

6:   for j = 1 n do 

7:    sum = sum + a[k][j] *S[j] 

8 :    if sum   0 then  

9:    sum   1 

10:    count   count * sum 

11:          end if 

12:   end for 

13:  end if 

14: end for 

15: if count   0 then 

16: DERIVED   True 

17: end if    
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4- COMPLEXITY ANALYSIS AND 

COMPUTATIONAL RESULTS 
The SDSA algorithm can be shown to run in O(n2n) time 

where n is the number of vertices in the given graph G. There 

are 2n subsets of V(G). We check every one by calling 

Algorithm 4 (Check-Subset). The Algorithm 3 ( Get-Next-

Subset ) requires O(n) time. We need exactly 2n-1 calls of 

Algorithm 3 (Get-Next-Subset), each one runs in O(n) time. 

Then the total running time of SDSA algorithm is O(n2n) 

sequential time. 

The algorithm describe in Section 3 has been experimentally 

implemented. In this Section, the numerical experiments are 

presented. It must be mentioned that the computational results 

demonstrates the number of derived subgraphs and its residual 

edges for some special graphs. 

Our numerical experiments were performed on a PC with 

2.000 MHz Pentium 4 processor, RAM 512 Mb and windows 

XP operating system. Our implementation was done under the 

C environment. 

Columns of the following tables contain problems size n and 

m, number of all derived subgraphs No_DS, number of all 

non-residual edges No_NRE and the running time CPU Time 

(secs.).    

Table 1. Derived subgraphs for the path graph Pn 

n No_DS No_NRE CPU Time 

(secs.) 

2 2 1 0.000181 

4 7 2 0.000367 

6 21 5 0.001085 

8 65 7 0.004173 

10 200 9 0.018365 

12 616 11 0.079329 

14 1897 13 0.352686 

16 5842 15 1.74612 

18 17991 17 7.962174 

20 55405 19 33.045809 

Table 2. Derived subgraphs for the cyclic graph Cn 

n No_DS No_NRE CPU Time  

(secs.) 

4 10 4 0.000356 

6 29 6 0.001080 

8 90 8 0.004166 

10 277 10 0.17741 

12 853 12 0.079052 

14 2627 14 0.355268 

16 8090 16 1.593558 

18 24914 18 7.371244 

20 76725 20 33.170715 

 

Table 3. Derived subgraphs for the complete graph Kn 

n No_DS No_NRE CPU Time 

(secs.) 

4 12 6 0.000358 

6 58 15 0.001103 

8 248 28 0.004330 

10 1014 45 0.018671 

12 4084 66 0.084653 

14 16370 91 0.387049 

16 65520 120 1.754086 

18 262126 153 8.062705 

20 1048556 190 37.126845 

 

Table 4. Derived subgraphs for the complete bipartite 

graph Km,n 

m n No_DS No_NRE CPU Time 

(secs.) 

1 1 2 1 0.000185 

2 2 10 4 0.000365 

3 3 50 9 0.001098 

4 4 226 16 0.004296 

5 5 962 25 0.018593 

6 6 3970 36 0.084717 

7 7 16130 49 0.385195 

8 8 65026 64 1.753573 

9 9 261122 81 8.358592 

10 10 1046530 100 37.569930 
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Fig.3: Executable time for Pn graph by SDSA 
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Figure 4. Executable time for Cn graph by SDSA 
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Figure 5. Executable time for Kn graph by SDSA 
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Figure 6. Executable time for Kn,m graph by SDSA 

From the above Tables, we can note that every graph for any 

size contains a non-residual edge (Conjecture 3 ) while from 

the above Plots,  we can see that the running time of the 

algorithm SDSA increases as an exponential time in the 

problem size n.  

5. CONCLUDING REMARKS 
In this work we proved some theorems which calculate the 

number of derived subgraphs for some special graphs. We 

also presented a new algorithm SDSA that calculates the 

number of derived subgraphs for a given graph G and 

determines the residual and non-residual edges. Finally, we 

introduced a computational study which supports our results. 

Our algorithm SDSA has O(n2n) sequential time so there is 

room for its further improvement as an sequential or parallel 

algorithm. These possible improvements will be the subject of 

our future work. 
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