
International Journal of Computer Applications (0975 – 8887)

Volume 50 – No.12, July 2012

1

A Computational Study for the Graph-Theoretic Version

of the Union-Closed Sets Conjecture

M. I. Moussa

Computer Science Department, Faculty of Computers &
Information, Benha University, Benha, Egypt,

E. M. Badr
Department of scientific computing, Faculty of Computers

& Information, Benha University, Benha, Egypt,

ABSTRACT
An induced subgraph S of a graph G is called a derived

subgraph of G if S contains no isolated vertices. An edge e of

G is said to be residual if e occurs in more than half of the

derived subgraphs of G. We prove some theorems which

calculate the number of derived subgraphs for some special

graphs. We also present a new algorithm SDSA that calculates

the number of derived subgraphs for a given graph G and

determines the residual and non-residual edges. Finally, we

introduce a computational study which supports our results.

Keywords
Union closed sets conjecture, induced graphs, derived

subgraphs.

1. INTRODUCTION
A union-closed family of sets A is a finite collection of sets

not all empty such that the union of any two members of A is

also a member of A . The following Conjecture is due to Peter

Frankl [1, 2, 3].

Conjecture 1. Let A = { A1, A2, . . . , An } be a union-closed

family of n distinct sets. Then there exists an element which

belongs to at least n / 2 of the sets in A.

Let A = iA . If we replace each set Ai by Bi = A - Ai then

we get an intersection-closed family of sets, which we call the

dual family of A. Therefore Conjecture 1 is equivalent to the

following.

Conjecture 2. Let B = { B1, B2, . . . , Bn } be an intersection-

closed family of n distinct sets. Then there exists an element

which belongs to at most n / 2 of the sets in B .

An induced subgraph S of a graph G is called a derived

subgraph of G if S contains no isolated vertices. An edge e of

G is said to be residual if e occurs in more than half of the

derived subgraphs of G otherwise e is non-residual. Let D(G)

denote the set of derived subgraphs of G and put nd(G) =

|D(G)|. A graph-theoretic version of the union-closed sets

conjecture due to El-Zahar [4]. He formulated a weaker

version of Conjecture 1 specialized for graphs as the

following.

Conjecture 3. Every non-empty graph contains a non-

residual edge.

Example 1. The derived subgraphs of C6 are  , C6 and the

subgraphs S1, S2, … , S5 together with their cyclic

permutations as shown in Figure 1. In all, we have nd(C6) =

29 (compare to 64 induced subgraphs of C6). Each edge of

C6 is contained in exactly 12 derived subgraphs and, therefore,

is non-residual.

v1

v2

v3

v4

v5

v6

v2

v1 v1

v2

v3 v1 v3

v2 v4

v1 v3 v5

v2 v4

v1

v2 v5

v4

C6
S1 S2 S3 S4 S5

Fig.1: Derived Subgraphs of C6

Example 2. Consider the graph G1 of Figure 2. This graph has

nd(G1) = 34. Each of the edges e1, e2, e3 occur in 18 derived

subgraphs so that it is residual. The remaining edges are non-

residual belonging only to 13 derived subgraphs.

v

e1 e3

e2

Fig. 2: Residual Edges

B. Llano et al proved that the every simple graph with at least

one edge contains a non-residual edge (Conjecture 3) [5].

In this work , our aim is to introduce a computational study

for derived subgraphs.

In Section 2, we prove some theorems which calculate the

number of derived subgraphs for some special graphs. In

Section 3, we present a new algorithm SDSA that calculates

the number derived subgraphs for a given graph G and

determines the residual and non-residual edges. In Section 4

we give a computational study which supports our results.

Finally, we give our conclusions and discuss possible

extensions of the algorithm.

2. THE MAIN RESULTS
In this Section, we prove some theorems which calculate the

number of derived subgraphs for some special graphs using

the Principle of Mathematical Induction and the Principle of

Inclusion-Exclusion.

International Journal of Computer Applications (0975 – 8887)

Volume 50 – No.12, July 2012

2

Theorem 1. Let Pn be the path v1, v2, v3, …, vn . Then the

number of derived subgraphs of Pn is given by the following

relation :

1 2 3

1 0,1

() 2 2

2 () () () 3

d n

d n d n d n

if n

n P if n

n P n P n P if n  




 
   

 (1)

Proof. We prove this theorem by the Principle of

Mathematical Induction. The proof will now proceed in two

steps : the initial step and the inductive step.

Initial Step. It is clear that the statement (1) is true for n = 0,

1, 2.

Inductive Step. Here we must prove that the following

assertion: " If there is a positive integer k such that ()d kn P =

1 2 32 () () ()d k d k d kn P n P n P    is true then

1 1 2() 2 () () ()d k d k d k d kn P n P n P n P     is true. Thus, we

assume there is a positive integer k such that

1 2 3() 2 () () ()d k d k d k d kn P n P n P n P     (2)

Since ()d kn P is the number of all derived subgraphs of Pk so

by adding one vertex vk+1 to the relation (2), we will

1()d kn P 
 as follows:

1({ })d k kn P v  =

1 1 2 1 3 12 ({ }) ({ }) ({ })d k k d k k d k kn P v n P v n P v         

 then
1 1 2() 2 () () ()d k d k d k d kn P n P n P n P     so the relation

(1) is true for n  0. ■

Theorem 2 . Let Cn be a cycle on n  3 vertices. Then the

number of derived subgraphs of Cn is given by the relation :
3

1 2

2

() = () 2(1) ()
n

d n d n d n i

i

n C n P n n P


  



   .

Proof. Let Cn be the cycle v1, v2, . . . , vn, v1 . Let x1 denote the

number of derived subgraphs of Cn not containing v1, then x1

=
1()d nn P 

. On the other hand, let x2 denote the number of

derived subgraphs which contain v1 . Such a derived subgraph

contains a path Pi of length (i – 1) that contains v1 and a

derived subgraph of path Pi of order (n – i – 2), where

2 1i n   . Then for fixed i this number is i 2()d n in P   .

Thus

3

2 2

2

() (2) (1)
n

d n i

i

x i n P n n


 



    

Moreover Cn is a derived subgraph of itself, therefore ()d nn C

= x1 + x2 + 1 so

3

1 2

2

() () 2(1) ()
n

d n d n d n I

i

n C n P n i n P


  



    ■

Theorem 3. Let G(n, n) be a bipartite graph with two

partitioning sets V1 and V2, where |V1| = |V2| = n and deg(v) = n

– 1 for each vV(G(n, n)). Then the number of derived

subgraphs of G(n, n)) is given by the relation :

((,))dn G n n = 2 12 2 2 2n n nn n     , and each edge

uv  E (G(n,n)) is contained in exactly 2n-1(2n-1 -1) derived

subgraphs.

Proof. Let V1= v1, v2, . . . , vn and V2 = u1, u2, . . . , un where

uivi  E(G(n, n)) for each i = 1, 2, . . . , n.

To form a derived subgraph, we take S1  S2 where Si  Vi

for i = 1, 2. If |S1|  2 and |S2|  2 then we get a derived

subgraph.

If |S1| =1, say, S1 = vi then 2 2 \{ }iS V u   . This shows

that

((,))dn G n n = 2(2 1) 1 2 (2 1)n nn n    

Now we fix an i = 1, 2, . . . , n. We count the number of

derived subgraphs which contain the edge v1ui . Such derived

subgraph will have the form S1  S2 where v1 S1  V1.

Again if |S1|  2 and |S2|  2 then we have a derived

subgraph.

 If, say S1 = {v1} then u1  S2. This shows that the number of

derived subgraphs which contain viui is equal to
1 2 2 2 2 1(2 1) 2(2) 1 2 2n n n n        .■

3. THE SERIAL DERIVED SUBGRAPH

ALGORITHM

In this Section, we introduce a serial derived subgraphs

algorithm SDSA which calculates the number of derived

subgraphs for a given graph G . The algorithm also

determines the residual and non-residual edges. The

parameters of the algorithm are :

A[i, j] : the adjacency matrix of G.

S [i] : all of the subsets of V(G).

(i,j) : the entry of the matrix E(i,j) which is equal to

 the number of derived subgraphs that contain vivj .

total : the number of all derived subgraphs of G.

Let G be a graph which has n vertices and m edges. We can

represent the graph G by the Adjacency-Graph class, where

a[i][j] is the entry element (i,j) in the adjacency matrix A. The

algorithm finds all subsets of the vertex set V(G); then it

checks if the current subset induces a derived subgraph or not.

The algorithim finds the number of derived subgraphs that

contain any edge e  E(G).

Our main algorithm SDSA calls three procedures Initialize-

Subset, Get-Next-Subset and Check-Subset as follows:

Algorithm 1: A serial derived subgraphs algorithm SDSA

Input : A[i][j] the adjacency matrix of G.

Output : (total) the number of all derived subgraphs of G.

International Journal of Computer Applications (0975 – 8887)

Volume 50 – No.12, July 2012

3

1: Call Algorithm2 (Initialize-Subset)

2: while Not Done do

3: Call Algorithm3 (Get-Next-Subset)

4: Call Algorithm4 (Check-Subset)

5: if DERIVED then

6: total  total + 1

7: for i=1n do

8: for j=i+1n do

9: if S[i] = S[j] = 1 then

10: E[i,j]  E[i,j] + 1

11: end if

12: end for

13: end for

14: end if

15: end while

16: Return total

17: For each e =(vi, vj) if E[i,j] > total / 2 the edge e is

residual otherwise is non-residual.

The Initialize-Subset procedure initializes the initial subset of

V(G) as array S[j] = 0. The subgraph induced by the initial S

is the empty derived subgraph. We outline below the

initialize-Subset procedure which considers the empty

subgraph as the first derived one.

Algorithm 2: Initialize-Subset

1: Take the empty set to be the initial subset S

2: Set the value of total = 1

3: For every edge e = (i, j) let E[i,j] = 0

4: Done False

The Get-Next-Subset procedure generates all subsets of V(G)

by the method is known as

a binary counting representation.

 Algorithm 3: Get-Next-Subset

1: j  n + 1

2: repeat

3: j  j – 1

4: until ((S[j] = 0) or (j = 0)

5: if j  0 then

6: S[j]  1

7: MAX  j

8: for i= MAX +1 n do

9: S[i] = 0

10: end for

11: else

12: Done  True

13: end if

The Check-Subset verifies the current subset S as a derived

subgraph or not. A precise description of this process is the

following.

Algorithm 4: Check-Subset

1: DERIVED  False

2: count  1

3: for k = 1  n do

4: if S[k] = 1 then

5: sum = 0

6: for j = 1 n do

7: sum = sum + a[k][j] *S[j]

8 : if sum  0 then

9: sum  1

10: count  count * sum

11: end if

12: end for

13: end if

14: end for

15: if count  0 then

16: DERIVED  True

17: end if

International Journal of Computer Applications (0975 – 8887)

Volume 50 – No.12, July 2012

4

4- COMPLEXITY ANALYSIS AND

COMPUTATIONAL RESULTS
The SDSA algorithm can be shown to run in O(n2n) time

where n is the number of vertices in the given graph G. There

are 2n subsets of V(G). We check every one by calling

Algorithm 4 (Check-Subset). The Algorithm 3 (Get-Next-

Subset) requires O(n) time. We need exactly 2n-1 calls of

Algorithm 3 (Get-Next-Subset), each one runs in O(n) time.

Then the total running time of SDSA algorithm is O(n2n)

sequential time.

The algorithm describe in Section 3 has been experimentally

implemented. In this Section, the numerical experiments are

presented. It must be mentioned that the computational results

demonstrates the number of derived subgraphs and its residual

edges for some special graphs.

Our numerical experiments were performed on a PC with

2.000 MHz Pentium 4 processor, RAM 512 Mb and windows

XP operating system. Our implementation was done under the

C environment.

Columns of the following tables contain problems size n and

m, number of all derived subgraphs No_DS, number of all

non-residual edges No_NRE and the running time CPU Time

(secs.).

Table 1. Derived subgraphs for the path graph Pn

n No_DS No_NRE CPU Time

(secs.)

2 2 1 0.000181

4 7 2 0.000367

6 21 5 0.001085

8 65 7 0.004173

10 200 9 0.018365

12 616 11 0.079329

14 1897 13 0.352686

16 5842 15 1.74612

18 17991 17 7.962174

20 55405 19 33.045809

Table 2. Derived subgraphs for the cyclic graph Cn

n No_DS No_NRE CPU Time

(secs.)

4 10 4 0.000356

6 29 6 0.001080

8 90 8 0.004166

10 277 10 0.17741

12 853 12 0.079052

14 2627 14 0.355268

16 8090 16 1.593558

18 24914 18 7.371244

20 76725 20 33.170715

Table 3. Derived subgraphs for the complete graph Kn

n No_DS No_NRE CPU Time

(secs.)

4 12 6 0.000358

6 58 15 0.001103

8 248 28 0.004330

10 1014 45 0.018671

12 4084 66 0.084653

14 16370 91 0.387049

16 65520 120 1.754086

18 262126 153 8.062705

20 1048556 190 37.126845

Table 4. Derived subgraphs for the complete bipartite

graph Km,n

m n No_DS No_NRE CPU Time

(secs.)

1 1 2 1 0.000185

2 2 10 4 0.000365

3 3 50 9 0.001098

4 4 226 16 0.004296

5 5 962 25 0.018593

6 6 3970 36 0.084717

7 7 16130 49 0.385195

8 8 65026 64 1.753573

9 9 261122 81 8.358592

10 10 1046530 100 37.569930

International Journal of Computer Applications (0975 – 8887)

Volume 50 – No.12, July 2012

5

0 5 10 15 20
0

10

20

30

40

 Problem Size

 C
P

U
 T

im
e
 (

s
e
c
s
)

 Derived subgraphs for the path graph Pn.

Fig.3: Executable time for Pn graph by SDSA

0 5 10 15 20
0

10

20

30

40

 Problem Size

 C
P

U
 T

im
e
 (

s
e
c
s
)

 Derived subgraphs for the cyclic graph C(n)

Figure 4. Executable time for Cn graph by SDSA

0 5 10 15 20
0

10

20

30

40

 Derived subgraphs for the complete graph K(n)

 Problem Size

 C
P

U
 T

im
e
 (

s
e
c
s
)

Figure 5. Executable time for Kn graph by SDSA

0 5 10 15 20
0

10

20

30

40

 Problem Size

 C
P

U
 T

im
e
 (

s
e
c
s
)

 Derived subgraphs for K(n,m).

Figure 6. Executable time for Kn,m graph by SDSA

From the above Tables, we can note that every graph for any

size contains a non-residual edge (Conjecture 3) while from

the above Plots, we can see that the running time of the

algorithm SDSA increases as an exponential time in the

problem size n.

5. CONCLUDING REMARKS
In this work we proved some theorems which calculate the

number of derived subgraphs for some special graphs. We

also presented a new algorithm SDSA that calculates the

number of derived subgraphs for a given graph G and

determines the residual and non-residual edges. Finally, we

introduced a computational study which supports our results.

Our algorithm SDSA has O(n2n) sequential time so there is

room for its further improvement as an sequential or parallel

algorithm. These possible improvements will be the subject of

our future work.

6. REFERENCES

[1] I. Rival (Ed.), Graphs And Order, Reidel, Dordrecht-

Boston,(1985), p.25.

 [2] R. P. Stanley, Enumerative Combinatorics, vol. I,

Wadsworth & Broks/Cole, Belmont, CA, (1986).

[3] B. Poonen, Union-Closed Families, J. Combin. Theory, A

59 (1992), 253-268.

 [4] M. H. El-Zahar , A Graph-Theoretic Version Of The

Union-Closed Sets Conjecture, J.Graph Theory 26

(1997), no. 3, 155-163.

[5] B. Llano, J. Montellano-Ballesteros, E. Rivera-Campo and

R. Strauz " On Conjecture of Frankl and El-Zahar" J.

Graph Theory 57: 344-352 (2008).

[6] G. Chartrand and L. Lesniak " Graphs & Digraphs" (third

edition) Chaman & Hall, London, (1996) .

